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Abstract— The amount of data generated today regarding 

volume, generation velocity, and variety is quite immense. 

This, in turn, has created a great challenge for scientists and 

researchers. To devise a solution, researchers have suggested a 

variety of schemes to help alleviate this problem. One of the 

suggested schemas is Association Rule Mining, and it is 

primarily focused on finding the associations in transaction-

like data. To assist in finding such associations, Frequent 

Itemsets should be discovered first. Therefore, this research is 

a new approach to finding Frequent Itemsets and it is based on 

the Apriori algorithm and Apache Spark distributed platform. 

Further, we introduce an extended version of Apriori which 

tends to find Maximal Frequent Itemsets first to help speed up 

the mining process. The results and comparison to algorithms 

like YAFIM and HFIM and the original Apriori show the 

suggested algorithm outperforms them in dense datasets by an 

average of 38 percent. 

Keywords— Apache Spark, Frequent Patterns, Association 

Rule Mining, Apriori Algorithm. 

I. INTRODUCTION 

Today's data generation velocity has led to a state in 
which, although data is abundant, but it is no longer feasible 
to make use of this data with the traditional techniques. Data 
is needed to understand the past and predict the future. 
According to [1],[2],[3] [1-3], the solution to this problem is 
mining the available data. Data Mining consists of a variety 
of tools and approaches. Topics like Clustering, 
Classification, and Association Rule Mining are all part of 
the scope of Data Mining. As one of the topics within the 
discipline of Data Mining, Association Rule Mining is 
primarily about extracting frequent patterns like itemsets, 
sequences, and graphs. This method consists of combining 
techniques originally introduced to augment the Apriori 
algorithm and Apache Spark as a distributed processing 
solution. Since Association Rules are about discovering 
patterns inside data, they are in the interest of academia and 
the market alike. Therefore, this research endeavor aims to 
address that by finding frequent patterns that are needed to 
derive association rules. 

The contents of this paper are organized in the order that 
the second chapter is mainly about reviewing relevant 
literature, the third chapter presenting the methodology of the 
suggested algorithm, while the fourth and fifth chapters 
present findings and conclude, respectively. 

II. LITERATURE REVIEW 

It is evident that since the original introduction of the 
Apriori algorithm [4] there are numerous attempts at 
enhancing and augmenting it. Algorithms like [5],[6],[7],[8] 
[5-8]  each have contributed their visions to the original 
Apriori. However, none of the above researches were in the 
context of big data platforms. Therefore, the literature in the 
focus of this research is primarily about current big data 
platforms. 

SRMINE [8], is an attempt at improving the original 
Apriori algorithm by employing a different perspective at the 
process of itemset counting in the original algorithm. The 
strategy presented in SRMINE starts the process of itemset 
counting in reverse since it is after Maximal Itemsets. The 
key idea is that, by finding the maximal itemsets, the time 
complexity and the space complexity of the algorithm 
decrease significantly. However, it is important to note that 
the approach taken in SRMINE is not big data. The research 
in [9] introduces an algorithm named MRApriori, which is a 
direct adaptation of Apriori in Apache's Hadoop platform, 
utilizing its underlying facilities for distributed processing 
across several nodes. SPC, DPC, and FPC are three 
algorithms presented in [10], which are variants of Apriori 
and based on Apache's Hadoop platform. SPC's approach is 
counting k-itemsets in one MapReduce phase, FPC counts 
fixed numbers of itemsets in each phase, and DPC counts the 
dynamic number of itemsets in each phase, determining the 
number by analyzing each phase's execution time. Dist-Eclat 
and BIGFIM are two algorithms introduced in [11], which 
both are based on the Apache Hadoop platform. Dist-Eclat is 
a distributed ECLAT based on the MapReduce approach of 
problem-solving. BIGFIM, on the other hand, is Apriori-
based and employs a partitioning technique, and thus, it gains 
high scalability and the ability to process very big datasets. 
The first algorithm to use Apache Spark for adapting Apriori 



 
is YAFIM [12] which is a direct adaptation with no 
modifications. DFIMA [13] is another Spark-based method. 
However, DFIMA differs from Apriori by introducing a 
special pruning system based on mathematical matrices. R-
Apriori [14] is a Spark-based algorithm that aims to adapt 
Apriori while adding enhancements by utilizing a different 
processing strategy and achieving a significant reduction in 
processing time. HFIM [15] is an effort to enhance Apriori 
by taking ideas from the ECLAT algorithm and infusing it 
with the Apriori principle while changing the itemset 
traversal scheme to include breadth-first approaches. 
Adaptive-miner [16] introduced by the researchers who had 
introduced R-Apriori earlier, is an algorithm that aims to 
infuse Apriori and Apache Spark while adding execution 
plan analysis to each phase of the processing that takes place. 
Lastly, the research in [17] is based on the combination of 
Apriori and Apache Spark and borrows ideas from the 
ECLAT algorithm while utilizing an alternative candidate 
counting strategy in each phase. Karimatabar and Fard [18] 
recently proposed another extension of Apriori by adding k-
itemset stages. Fard and Namin [19] presented a review for 
the Apriori-based algorithms on big data. 

III. METHODOLOGY 

A. Dataset 

The Apriori algorithm is a Frequent Itemset Mining 
algorithm, and it is usually used to extract frequent itemsets 
from transactional datasets. For this research, the sources of 
the datasets were primarily the websites in [16,17] since they 
provide datasets specific to Frequent itemset mining. For the 
sake of testing and verification, datasets like  Retail, Chess 
were used from the sources mentioned above. In Table I, the 
characteristics of each dataset used for this research are 
summarized.   

B. Algorithm 

The suggested algorithm is implemented in Apache 
Spark distributed processing engine, and it aims to introduce 
an augmented itemset pruning strategy while reducing 
dataset scans by using the Apriori Principle along with an 
idea adopted from the research [13]. The idea in [13] is about 
stopping the counting process where the number of k-
itemsets is lower than 'k'.  

To better explain the algorithm, the assumptions about 
the data and the inherent nature of frequent itemset mining 
are presented here: 

 The maximum length of transactions in all datasets is 
less than or equal to the number of distinct items. 

 There is no repeated or duplicated item in any of the 
transactions.  

 The maximum number of the generated itemsets 
equals the powerset of the set of distinct items in the 
dataset. 

 The Apriori Property states that all of the subsets of 
a frequent itemset are frequent also. 

 The more the value of Minsup is, the faster a 
Frequent Itemset Mining algorithm terminates. 

With the assumptions above, the approach of the 
suggested algorithm is explained in the following: 

1. During the Preprocessing phase, infrequent items are 

detected and pruned from the entire dataset. It is 

obvious that if a transaction should consist of infrequent 

items in its entirety, the transaction itself is pruned. 

2. During the actual process phase (Fig.1), the number of 

maximum transaction length is divided by 4. The reason 

that this number is used Is due to numerous trials and 

errors. Going forward, AltrenativeApriori creates four 

ranges to organize its counting strategy. According to 

(1), The first range is [0,q1] in which 

1

max _ transaction _ size
   

4
q  

According to (2), The second range is [q1,q2] in which 

2 1 1     q q q  

The third in (3), [q2,q3] where 

3 1 2q q q  

and lastly in (4), [q3,q4 ] where 

4 1 3q q q  

TABLE I.  SUMMARIZATION OF THE CHARACTERISTICS OF THE 

DATASETS 

No. of 

Transactions 

Maximum 

Transaction 

Length 

Minimum 

Transaction 

Length 

Dataset 

Name 

4,141 14 1 FoodMart 

9,976 63 3 T25I10D10K 

88,162 76 1 Retail 

3,196 37 37 Chess 

 



 

 

Fig. 1. Flowchart of the process phase 

3. A random sample containing 2000 transactions is 

drawn. Then according to (5), the new minsup equals to  

  *2000minsup minsup  (5) 

4. The process begins. Traversing the ranges in 

descending order, each range right-edge is selected: 

 The transactions having more length than the 

selected number are selected. 

 All of the subsets of selected transactions are 

generated. 

 Using a map and reduce functions, the frequency of 

each subset (itemset) is calculated. Only those 

which meet the criteria of having a frequency value 

bigger than minsup are returned. 

 If the output of the calculation in the step above is 0, 

then from the inside of the current range which 

we're generating frequent itemsets for which the 

right-edge is selected. 

5. The process continues for qn+1. If the output is zero, the 

algorithm proceeds to step 6. If otherwise, the algorithm 

continues for qn+2. 

6. In this step, the inter-range levels are calculated to find 

the last k in which the number of frequent itemsets is 

not zero. 

7. In this step, using the k found in step 6, the algorithm 

switches to the original dataset and tests the validity of 

the (k-1,k,k+1) levels. In other words, neighbors of the 

original k. 

In the post-process phase, all of the subsets of the 
maximal itemsets found during the process phase are 
generated. Then, the difference between the items present in 
the maximal itemsets and the original distinct items is 
calculated. Further, the intermediate itemsets containing the 
difference set items are generated to have full coverage. 

IV. FINDINGS 

To test and compare execution results, a computer system 
with these specifications was used: 

 CPU: Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz 
, 12 Core 

 RAM: 31 Gigabyte 

 HDD: 50 GB 

Start 

Make q1,q2,q3,q4 

Create 2000 sample 

For each k in Q find 

maximal itemset in 

sample 

Is results 

empty 

Make nQ based on 

inter_q range 

For each k in nQ find 

maximal itemset in 

sample 

Is results 

empty 

If count 

(results) < 

q 

Make range (i-1, i+2) 

For each k in new rang 

find maximal itemset 

in original dataset 

Is results 

empty 

If count 

(results) < 

k 

i=k-q 

i=k-1 

i=k 

Find maximal itemset 

based on i 

If empty 

Scan from i 

downwards 

If not 

empty 

End 

i=k-1 

i=k 

i=k 



 
 Spark Version: 2.4.2 

 JDK Version: 11.0.2 

 OS: Ubuntu 16.04.5 LTS 

 Scala Version: 2.12.8 

Observations in Fig.2 indicate that the suggested 
algorithm performs best on dense datasets. The suggested 
algorithm execution time on the Chess dataset is quite 
interesting concerning those of HFIM's and YAFIM's. It is 
evident that in the case of the Chess dataset, our algorithms  

  

  

Fig. 2.  Experiment Results on the datasets summarized in Table I 

perform in 83 seconds while HFIM and YAFIM perform 
in 106 and 360 seconds, respectively. Note that YAFIM's 
execution time limit is set to 1000. Therefore, the 
YAFIM's process is terminated if it crosses the 1000 
seconds limit. To explain further, the Chess dataset is 
considered dense, meaning that it has 37 distinct items 
while the average transaction length is 37. In other words, 
the presented algorithm counts all of the transactions in 
each and every iteration. However, Retail is different. The 
reason is that it is constrained by the minusp value 

specified at the beginning of the process; the pertaining 
frequent itemsets are found in the first k's. Therefore, our 
algorithm finds them faster because of the alternative 
itemset tree traversal approach it takes. 

Table II demonstrates the relative percentages of 
execution times of the suggested approach and HFIM 
algorithms. It is important to note that the comparison 
excludes YAFIM since its execution time in the current 
hardware setup is not on par with that of our approach and 
HFIM. According to the execution times listed for each 



 
dataset, on average, the suggested algorithm performs 
about 38% faster than HFIM while having full coverage of 
the itemsets found. 

V. CONCLUSION AND FUTURE WORK 

The endeavor in this research aimed to achieve a 
method for the extraction of frequent itemsets. Finding and 
extracting frequent itemsets in big data is a significant 
challenge since traditional methods like the original   

TABLE II.  RELATIVE REDUCTION IN EXECUTION TIME 

Dataset Algorithm Relative 

Reduction in 

Execution Time 

 Proposed 

Algorithm 
HFIM YAFIM  

Retail 58.3 450.4 1000 87 

Chess 83.4 106.6 360 21 

FoodMart 11 11 60 0 

T25I10D10K 6 11 75 45 

Average Execution Time Reduction 38.25 

Apriori, FP-Growth, and ECLAT algorithms no longer 
apply. Therefore, new methods and tools are needed to 
make big data manageable. The Apache Spark platform is 
one of the numerous distributed processing tools that 
facilitate distributed processing while exposing facilities 
for adapting algorithms to distributed processing 
platforms. Numerous works are focusing on adapting the 
aforementioned algorithms to the Apache Spark platform 
while introducing modifications to help improve the 
existing methods. 

The methodology used in this research consists of 
gathering relevant datasets from credible sources and 
implementing modifications such as partitioning, 
sampling, heuristics and preprocessing approaches like 
pruning infrequent items from the whole dataset. 
Therefore, in the final iteration of the suggested algorithm, 
a preprocessing step involving pruning infrequent items, a 
sampling, and heuristics scheme along with using the 
Apriori Property together with a property adopted from 
[20] were used to achieve results. The key to the 
methodology used in the suggested algorithm  is an 
interpretation of the Apriori Property. In other words, our 
algorithm aims to find the Maximal Itemsets first and 
foremost to reduce time and space complexity. 

According to comparisons done between the suggested 
algorithm and HFIM and YAFIM algorithms on the 
hardware setting specified throughout the text, it 

outperforms the others by a 38% difference. It also 
guarantees full coverage of frequent itemsets since in the 
post-process phase, it scans the dataset for all the frequent 
itemsets that are not part of the maximal ones. For future 
work, the suggested algorithm will be examined on other 
datasets for a more in-depth evaluation. 
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