

An Approach to Improve Apriori Algorithm for

Extraction of Frequent Itemsets

Mohammad Javad Shayegan*, Parsa Asgari Namin

Department of Computer Engineering, University of Science and Culture, Tehran, Iran.

shayegan@usc.ac.ir, parsa.asgari.namin@gmail.com

Abstract— The amount of data generated today regarding

volume, generation velocity, and variety is quite immense.

This, in turn, has created a great challenge for scientists and

researchers. To devise a solution, researchers have suggested a

variety of schemes to help alleviate this problem. One of the

suggested schemas is Association Rule Mining, and it is

primarily focused on finding the associations in transaction-

like data. To assist in finding such associations, Frequent

Itemsets should be discovered first. Therefore, this research is

a new approach to finding Frequent Itemsets and it is based on

the Apriori algorithm and Apache Spark distributed platform.

Further, we introduce an extended version of Apriori which

tends to find Maximal Frequent Itemsets first to help speed up

the mining process. The results and comparison to algorithms

like YAFIM and HFIM and the original Apriori show the

suggested algorithm outperforms them in dense datasets by an

average of 38 percent.

Keywords— Apache Spark, Frequent Patterns, Association

Rule Mining, Apriori Algorithm.

I. INTRODUCTION

Today's data generation velocity has led to a state in
which, although data is abundant, but it is no longer feasible
to make use of this data with the traditional techniques. Data
is needed to understand the past and predict the future.
According to [1],[2],[3] [1-3], the solution to this problem is
mining the available data. Data Mining consists of a variety
of tools and approaches. Topics like Clustering,
Classification, and Association Rule Mining are all part of
the scope of Data Mining. As one of the topics within the
discipline of Data Mining, Association Rule Mining is
primarily about extracting frequent patterns like itemsets,
sequences, and graphs. This method consists of combining
techniques originally introduced to augment the Apriori
algorithm and Apache Spark as a distributed processing
solution. Since Association Rules are about discovering
patterns inside data, they are in the interest of academia and
the market alike. Therefore, this research endeavor aims to
address that by finding frequent patterns that are needed to
derive association rules.

The contents of this paper are organized in the order that
the second chapter is mainly about reviewing relevant
literature, the third chapter presenting the methodology of the
suggested algorithm, while the fourth and fifth chapters
present findings and conclude, respectively.

II. LITERATURE REVIEW

It is evident that since the original introduction of the
Apriori algorithm [4] there are numerous attempts at
enhancing and augmenting it. Algorithms like [5],[6],[7],[8]
[5-8] each have contributed their visions to the original
Apriori. However, none of the above researches were in the
context of big data platforms. Therefore, the literature in the
focus of this research is primarily about current big data
platforms.

SRMINE [8], is an attempt at improving the original
Apriori algorithm by employing a different perspective at the
process of itemset counting in the original algorithm. The
strategy presented in SRMINE starts the process of itemset
counting in reverse since it is after Maximal Itemsets. The
key idea is that, by finding the maximal itemsets, the time
complexity and the space complexity of the algorithm
decrease significantly. However, it is important to note that
the approach taken in SRMINE is not big data. The research
in [9] introduces an algorithm named MRApriori, which is a
direct adaptation of Apriori in Apache's Hadoop platform,
utilizing its underlying facilities for distributed processing
across several nodes. SPC, DPC, and FPC are three
algorithms presented in [10], which are variants of Apriori
and based on Apache's Hadoop platform. SPC's approach is
counting k-itemsets in one MapReduce phase, FPC counts
fixed numbers of itemsets in each phase, and DPC counts the
dynamic number of itemsets in each phase, determining the
number by analyzing each phase's execution time. Dist-Eclat
and BIGFIM are two algorithms introduced in [11], which
both are based on the Apache Hadoop platform. Dist-Eclat is
a distributed ECLAT based on the MapReduce approach of
problem-solving. BIGFIM, on the other hand, is Apriori-
based and employs a partitioning technique, and thus, it gains
high scalability and the ability to process very big datasets.
The first algorithm to use Apache Spark for adapting Apriori

is YAFIM [12] which is a direct adaptation with no
modifications. DFIMA [13] is another Spark-based method.
However, DFIMA differs from Apriori by introducing a
special pruning system based on mathematical matrices. R-
Apriori [14] is a Spark-based algorithm that aims to adapt
Apriori while adding enhancements by utilizing a different
processing strategy and achieving a significant reduction in
processing time. HFIM [15] is an effort to enhance Apriori
by taking ideas from the ECLAT algorithm and infusing it
with the Apriori principle while changing the itemset
traversal scheme to include breadth-first approaches.
Adaptive-miner [16] introduced by the researchers who had
introduced R-Apriori earlier, is an algorithm that aims to
infuse Apriori and Apache Spark while adding execution
plan analysis to each phase of the processing that takes place.
Lastly, the research in [17] is based on the combination of
Apriori and Apache Spark and borrows ideas from the
ECLAT algorithm while utilizing an alternative candidate
counting strategy in each phase. Karimatabar and Fard [18]
recently proposed another extension of Apriori by adding k-
itemset stages. Fard and Namin [19] presented a review for
the Apriori-based algorithms on big data.

III. METHODOLOGY

A. Dataset

The Apriori algorithm is a Frequent Itemset Mining
algorithm, and it is usually used to extract frequent itemsets
from transactional datasets. For this research, the sources of
the datasets were primarily the websites in [16,17] since they
provide datasets specific to Frequent itemset mining. For the
sake of testing and verification, datasets like Retail, Chess
were used from the sources mentioned above. In Table I, the
characteristics of each dataset used for this research are
summarized.

B. Algorithm

The suggested algorithm is implemented in Apache
Spark distributed processing engine, and it aims to introduce
an augmented itemset pruning strategy while reducing
dataset scans by using the Apriori Principle along with an
idea adopted from the research [13]. The idea in [13] is about
stopping the counting process where the number of k-
itemsets is lower than 'k'.

To better explain the algorithm, the assumptions about
the data and the inherent nature of frequent itemset mining
are presented here:

 The maximum length of transactions in all datasets is
less than or equal to the number of distinct items.

 There is no repeated or duplicated item in any of the
transactions.

 The maximum number of the generated itemsets
equals the powerset of the set of distinct items in the
dataset.

 The Apriori Property states that all of the subsets of
a frequent itemset are frequent also.

 The more the value of Minsup is, the faster a
Frequent Itemset Mining algorithm terminates.

With the assumptions above, the approach of the
suggested algorithm is explained in the following:

1. During the Preprocessing phase, infrequent items are

detected and pruned from the entire dataset. It is

obvious that if a transaction should consist of infrequent

items in its entirety, the transaction itself is pruned.

2. During the actual process phase (Fig.1), the number of

maximum transaction length is divided by 4. The reason

that this number is used Is due to numerous trials and

errors. Going forward, AltrenativeApriori creates four

ranges to organize its counting strategy. According to

(1), The first range is [0,q1] in which

1

max _ transaction _ size

4
q

According to (2), The second range is [q1,q2] in which

2 1 1 q q q

The third in (3), [q2,q3] where

3 1 2q q q

and lastly in (4), [q3,q4] where

4 1 3q q q

TABLE I. SUMMARIZATION OF THE CHARACTERISTICS OF THE

DATASETS

No. of

Transactions

Maximum

Transaction

Length

Minimum

Transaction

Length

Dataset

Name

4,141 14 1 FoodMart

9,976 63 3 T25I10D10K

88,162 76 1 Retail

3,196 37 37 Chess

Fig. 1. Flowchart of the process phase

3. A random sample containing 2000 transactions is

drawn. Then according to (5), the new minsup equals to

 *2000minsup minsup (5)

4. The process begins. Traversing the ranges in

descending order, each range right-edge is selected:

 The transactions having more length than the

selected number are selected.

 All of the subsets of selected transactions are

generated.

 Using a map and reduce functions, the frequency of

each subset (itemset) is calculated. Only those

which meet the criteria of having a frequency value

bigger than minsup are returned.

 If the output of the calculation in the step above is 0,

then from the inside of the current range which

we're generating frequent itemsets for which the

right-edge is selected.

5. The process continues for qn+1. If the output is zero, the

algorithm proceeds to step 6. If otherwise, the algorithm

continues for qn+2.

6. In this step, the inter-range levels are calculated to find

the last k in which the number of frequent itemsets is

not zero.

7. In this step, using the k found in step 6, the algorithm

switches to the original dataset and tests the validity of

the (k-1,k,k+1) levels. In other words, neighbors of the

original k.

In the post-process phase, all of the subsets of the
maximal itemsets found during the process phase are
generated. Then, the difference between the items present in
the maximal itemsets and the original distinct items is
calculated. Further, the intermediate itemsets containing the
difference set items are generated to have full coverage.

IV. FINDINGS

To test and compare execution results, a computer system
with these specifications was used:

 CPU: Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
, 12 Core

 RAM: 31 Gigabyte

 HDD: 50 GB

Start

Make q1,q2,q3,q4

Create 2000 sample

For each k in Q find

maximal itemset in

sample

Is results

empty

Make nQ based on

inter_q range

For each k in nQ find

maximal itemset in

sample

Is results

empty

If count

(results) <

q

Make range (i-1, i+2)

For each k in new rang

find maximal itemset

in original dataset

Is results

empty

If count

(results) <

k

i=k-q

i=k-1

i=k

Find maximal itemset

based on i

If empty

Scan from i

downwards

If not

empty

End

i=k-1

i=k

i=k

 Spark Version: 2.4.2

 JDK Version: 11.0.2

 OS: Ubuntu 16.04.5 LTS

 Scala Version: 2.12.8

Observations in Fig.2 indicate that the suggested
algorithm performs best on dense datasets. The suggested
algorithm execution time on the Chess dataset is quite
interesting concerning those of HFIM's and YAFIM's. It is
evident that in the case of the Chess dataset, our algorithms

Fig. 2. Experiment Results on the datasets summarized in Table I

perform in 83 seconds while HFIM and YAFIM perform
in 106 and 360 seconds, respectively. Note that YAFIM's
execution time limit is set to 1000. Therefore, the
YAFIM's process is terminated if it crosses the 1000
seconds limit. To explain further, the Chess dataset is
considered dense, meaning that it has 37 distinct items
while the average transaction length is 37. In other words,
the presented algorithm counts all of the transactions in
each and every iteration. However, Retail is different. The
reason is that it is constrained by the minusp value

specified at the beginning of the process; the pertaining
frequent itemsets are found in the first k's. Therefore, our
algorithm finds them faster because of the alternative
itemset tree traversal approach it takes.

Table II demonstrates the relative percentages of
execution times of the suggested approach and HFIM
algorithms. It is important to note that the comparison
excludes YAFIM since its execution time in the current
hardware setup is not on par with that of our approach and
HFIM. According to the execution times listed for each

dataset, on average, the suggested algorithm performs
about 38% faster than HFIM while having full coverage of
the itemsets found.

V. CONCLUSION AND FUTURE WORK

The endeavor in this research aimed to achieve a
method for the extraction of frequent itemsets. Finding and
extracting frequent itemsets in big data is a significant
challenge since traditional methods like the original

TABLE II. RELATIVE REDUCTION IN EXECUTION TIME

Dataset Algorithm Relative

Reduction in

Execution Time

 Proposed

Algorithm
HFIM YAFIM

Retail 58.3 450.4 1000 87

Chess 83.4 106.6 360 21

FoodMart 11 11 60 0

T25I10D10K 6 11 75 45

Average Execution Time Reduction 38.25

Apriori, FP-Growth, and ECLAT algorithms no longer
apply. Therefore, new methods and tools are needed to
make big data manageable. The Apache Spark platform is
one of the numerous distributed processing tools that
facilitate distributed processing while exposing facilities
for adapting algorithms to distributed processing
platforms. Numerous works are focusing on adapting the
aforementioned algorithms to the Apache Spark platform
while introducing modifications to help improve the
existing methods.

The methodology used in this research consists of
gathering relevant datasets from credible sources and
implementing modifications such as partitioning,
sampling, heuristics and preprocessing approaches like
pruning infrequent items from the whole dataset.
Therefore, in the final iteration of the suggested algorithm,
a preprocessing step involving pruning infrequent items, a
sampling, and heuristics scheme along with using the
Apriori Property together with a property adopted from
[20] were used to achieve results. The key to the
methodology used in the suggested algorithm is an
interpretation of the Apriori Property. In other words, our
algorithm aims to find the Maximal Itemsets first and
foremost to reduce time and space complexity.

According to comparisons done between the suggested
algorithm and HFIM and YAFIM algorithms on the
hardware setting specified throughout the text, it

outperforms the others by a 38% difference. It also
guarantees full coverage of frequent itemsets since in the
post-process phase, it scans the dataset for all the frequent
itemsets that are not part of the maximal ones. For future
work, the suggested algorithm will be examined on other
datasets for a more in-depth evaluation.

REFERENCES

[1] M. Cafaro and M. Pulimeno, "Frequent Itemset Mining," in
Business and Consumer Analytics: New Ideas, 2019.

[2] A. Maske and B. Joglekar, "Survey on Frequent Item-Set Mining
Approaches in Market Basket Analysis," in Proceedings - 2018 4th
International Conference on Computing, Communication Control
and Automation, ICCUBEA 2018, 2018, doi:
10.1109/ICCUBEA.2018.8697776.

[3] W. Gan, J. C.-W. Lin, H.-C. Chao, and J. Zhan, "Data mining in
distributed environment: a survey," Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 6,
2017, doi: 10.1002/widm.1216.

[4] R. Agrawal and R. Srikant, "Fast algorithms for mining association
rules," in 94 Proceedings of the 20th International onference on
Very Large Data Bases, 1994, doi: 10.1.1.40.6757.

[5] M. J. Zaki, "Scalable algorithms for association mining," IEEE
Transactions on Knowledge and Data Engineering, 2000, doi:
10.1109/69.846291.

[6] R. J. Bayardo, "Efficiently mining long patterns from databases,"
SIGMOD Record, 1998, doi: 10.1145/276305.276313.

[7] R. Agrawal and J. C. Shafer, "Parallel mining of association rules,"
IEEE Transactions on Knowledge and Data Engineering, 1996,
doi: 10.1109/69.553164.

[8] S. Chourasia, R. Vishwakarma, N. Shukla, and M. Utmal, "An
Innovative Approach for finding Frequent Item sets using Maximal
Apriori and Fusion Process and Its Evaluation," International
Journal of Computer Applications, vol. 40, no. 4, pp. 23–26, Feb.
2012, doi: 10.5120/5033-7184.

[9] O. Yahya, O. Hegazy, and E. Ezat, "An efficient implementation of
Apriori algorithm based on Hadoop-Mapreduce model," Proc. of
the, 2012.

[10] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, "Apriori-based frequent
itemset mining algorithms on MapReduce," in Proceedings of the
6th International Conference on Ubiquitous Information
Management and Communication - ICUIMC '12, 2012, p. 1, doi:
10.1145/2184751.2184842.

[11] K. Chavan, P. Kulkarni, P. Ghodekar, and S. N. Patil, "Frequent
itemset mining for Big data," in 2015 International Conference on
Green Computing and Internet of Things (ICGCIoT), 2015, pp.
1365–1368, doi: 10.1109/ICGCIoT.2015.7380679.

[12] H. Qiu, R. Gu, C. Yuan, and Y. Huang, "YAFIM: A parallel
frequent itemset mining algorithm with spark," in Proceedings -
IEEE 28th International Parallel and Distributed Processing
Symposium Workshops, IPDPSW 2014, 2014, pp. 1664–1671, doi:
10.1109/IPDPSW.2014.185.

[13] F. Gui et al., "A distributed frequent itemset mining algorithm
based on Spark," 2015 IEEE 19th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), vol.
18, no. 4, pp. 271–275, 2015, doi:
10.1109/CSCWD.2015.7230970.

[14] S. Rathee, M. Kaul, and A. Kashyap, "R-Apriori: An Efficient
Apriori based Algorithm on Spark," ACM, pp. 27–34, 2015, doi:
10.1145/2809890.2809893.

[15] K. K. Sethi and D. Ramesh, "HFIM: a Spark-based hybrid frequent
itemset mining algorithm for big data processing," The Journal of

Supercomputing, vol. 73, no. 8, pp. 3652–3668, 2017, doi:
10.1007/s11227-017-1963-4.

[16] S. Rathee and A. Kashyap, "Adaptive-Miner: an efficient
distributed association rule mining algorithm on Spark," Journal of
Big Data, vol. 5, no. 1, p. 6, Feb. 2018, doi: 10.1186/s40537-018-
0112-0.

[17] F. Gao, A. Khandelwal, and J. Liu, "Mining frequent itemsets
using improved apriori on spark," in ACM International
Conference Proceeding Series, 2019, doi:
10.1145/3325917.3325925.

[18] M. J. S. Fard and P. A. Namin, "Review of Apriori based Frequent
Itemset Mining Solutions on Big Data," in 2020 6th International
Conference on Web Research (ICWR), 2020, pp. 157-164: IEEE.

[19] N. Karimtabar and M. J. S. Fard, "An Extension of the Apriori
Algorithm for Finding Frequent Items," in 2020 6th International
Conference on Web Research (ICWR), 2020, pp. 330-334: IEEE.

[20] P. F. Viger, "SPMF - An Open-Source Data Mining Library."
[Online]. Available: http://www.philippe-fournier-
viger.com/spmf/index.php?link=datasets.php.

